BioMETRICS 53, 1440-1457
December 1997

Design Aspects of Calibration Studies in
Nutrition, with Analysis of Missing Data in
Linear Measurement Error Models

Raymond J. Carroll,’ Laurence Freedman,? and David Pee?

Department of Statistics, Texas A&M University,
College Station, Texas 77843-3143, U.S.A.
?Biometry Branch, DCPC, National Cancer Institute,
Executive Plaza North, Room 344, MSC 7354,
Bethesda, Maryland 20892-7354, U.S.A.
3Information Management Services, Inc., 6120 Executive Boulevard,
Rockville, Maryland 20852, U.S.A.

SUMMARY

Motivated by an example in nutritional epidemiology, we investigate some design and analysis
aspects of linear measurement error models with missing surrogate data. The specific problem in-
vestigated consists of an initial large sample in which the response (a food frequency questionnaire,
FFQ) is observed and then a smaller calibration study in which replicates of the error prone pre-
dictor are observed (food records or recalls, FR). The difference between our analysis and most
of the measurement error model literature is that, in our study, the selection into the calibration
study can depend on the value of the response. Rationale for this type of design is given. Two
major problems are investigated. In the design of a calibration study, one has the option of larger
sample sizes and fewer replicates or smaller sample sizes and more replicates. Somewhat surpris-
ingly, neither strategy is uniformly preferable in cases of practical interest. The answers depend
on the instrument used (recalls or records) and the parameters of interest. The second problem
investigated is one of analysis. In the usual linear model with no missing data, method of moments
estimates and normal-theory maximum likelihood estimates are approximately equivalent, with the
former method in most use because it can be calculated easily and explicitly. Both estimates are
valid without any distributional assumptions. In contrast, in the missing data problem under con-
sideration, only the moments estimate is distribution-free, but the maximum likelihood estimate
has at least 50% greater precision in practical situations when normality obtains. Implications for
the design of nutritional calibration studies are discussed.

1. Introduction

1.1 Querview

The assessment and quantification of an individual’s usual diet is a difficult exercise, but one that
is fundamental to discovering relationships between diet and disease and to monitoring dietary
behavior among individuals and populations. Various dietary assessment instruments have been
devised, of which three main types are most commonly used in contemporary nutritional research.
The one that is most convenient and inexpensive to use is the food frequency questionnaire (FFQ),
which is the instrument of choice in large nutritional epidemiology studies. FFQs are structured
lists of foods commonly consumed by the target population arranged in food groups (such as meats,
fruits and vegetables, breakfast cereals, etc.). The respondent is required to go down the list and
indicate the frequency (never, once a month, once a week, etc.) with which each item has been
generally consumed over a recent long-term period, say 12 months. Some FFQs include specification
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of the average portion size consumed. While dietary intake levels reported from FFQs are correlated
with true usual intake, they are thought to involve a systematic bias (i.e., under- or overreporting
at the level of the individual). This is due partly to the difficulty of recalling diet over a long-term
period, partly to the difficulty of specifying portion size, and partly to the difficulties of converting
the limited information on the list into exact amounts of nutrients.

The other two instruments that are commonly used are the 24-hour food recall and the
multiple-day food record (FR). Twenty-four-hour food recalls are obtained by a trained interviewer
questioning a respondent on the food that was consumed the previous day, including full details
of brand names of products and portion sizes. Food records are self-completed records of food
consumed over a multiple-day period, with the respondent ideally recording the details of foods as
they are consumed. Each of these is more work-intensive and more costly but is thought to involve
less bias than an FFQ because the meals taken are either very recent or current and the details
of each food item can be specified more precisely. However, the large daily variation in a Western
diet makes a single FR an imprecise measure of true usual intake.

1.2 Calibration Studies and Their Aims

Despite the problem that FRs are not completely unbiased and may involve some underreporting,
their generally accepted superiority over FFQs makes them the current practical gold standard for
dietary assessment. Thus, for proper interpretation of epidemiologic studies that use FFQs as the
basic dietary instrument, one needs to know the relationship between reported intakes from the
FFQ and true usual intake, defined by the average intakes reported over a very long series of FRs.
Such a relationship is ascertained through a substudy, commonly called a calibration (or validation)
study.

The design of calibration studies has only recently attracted the interest of biostatisticians.
This interest arises from the growing awareness of the problem of error in the measurement of
exposures and its effect on estimation and power in epidemiologic studies. Calibration studies can
provide valuable information on the nature and magnitude of the error using a given measurement
method and are therefore important for the proper design and interpretation of epidemiologic
studies using that method. Currently, the epidemiologic area that is most actively engaged in the
conduct of calibration studies is nutrition, probably because of the profound problems in measuring
dietary intake. Most of the calibration studies that have been conducted in this area have been
associated with a larger epidemiologic study using the same measurement instrument. In early
calibration studies, it was assumed that one should attempt to measure the usual dictary intake
of an individual as accurately as possible to act as a gold-standard comparison with the more
approximate instrument to be used in the larger study (e.g., Willett, Sampson, and Stampfer,
1985). However, this wisdom was challenged when statisticians considered how such data would be
used to aid interpretation of the main study. First, Carroll et al. (1984) and Rosner, Willett, and
Spiegelman (1989) demonstrated that a valid measurement error adjustment of the relative risk
estimates from the main study can be made even when the calibration study does not include a
very accurate measure of usual dietary intake. It would be sufficient to include a measure of intake
that is simply unbiased. This meant that it was not imperative to use many repeat measurements
of dietary intake in order to greatly increase the precision of the measure. Then, Kaaks, Riboli,
and van Stavern (1995) and Stram, Longnecker, and Shames (1995) considered the variance of the
estimated relative risks adjusted for measurement error using such data from a calibration study.
They discovered that, if one has a choice between increasing the number of repeat measurements
per individual or increasing the number of individuals, then under assumptions of equal cost, the
variance is minimized by maximizing the number of individuals in the calibration study. Stram et
al. (1995) also investigated the optimal strategy when costs are not equal.

The primary aim of a calibration study may not be exactly the same in each case. In this paper,
we consider four possibilities.

(a) The aim that has been most frequently described is to use information from the calibration
study to adjust the relative risks estimated from the main epidemiologic study for the
measurement error associated with use of the FFQ (Kaaks et al., 1995). It is well-known
that measurement error biases the estimated relative risks, and this motivates the need for
adjustment.

(b) Another possible aim is to estimate the sample size required in the main study. The required
sample size depends heavily on the degree of measurement error associated with the FFQ
(Freedman, Schatzkin, and Wax, 1990), so there is good reason to check on this before
proceeding with the main epidemiologic study. In this case, it is important that the calibration
study be conducted and evaluated before the main study proceeds.
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(c) A third possible aim is to estimate the correlation between FFQ intake and true usual intake.
This could be of crucial interest if the FFQ has been modified extensively from previous versions
or is to be used in a new population from which little previous data have been obtained.
Very low correlations might persuade the investigators to postpone the main study, pending
improvements in the design of the FFQ or in the way it is presented to study participants.

(d) A fourth possible aim is to estimate the slope of the regression of FFQ intake on the usual
intake. This parameter is of importance in assessing the patterns of bias that might exist with
use of the FFQ.

1.3 The American Association for Retired People (AARP) Study

The National Cancer Institute and American Association for Retired People (AARP) are
collaborating in conducting a large prospective nutritional epidemiologic study, in which members
of the AARP will report information on their dietary habits and will be followed to ascertain
new diagnoses of cancer. The motivation for the study was, first, the degree of disagreement and
controversy over the results of previous epidemiologic studies of diet and cancer, particularly breast
cancer (Prentice et al., 1988); second, the limited range of intakes of major macronutrients, such as
fats, in previously studied cohorts (Hebert and Miller, 1988); and third, the need for large numbers
of cancer cases to occur during follow-up for the detection of small but important observed relative
risks. The last point is emphasized by noting that a true relative risk of 2.0 can typically be reduced
by dietary measurement error to an observed relative risk of 1.25 (Freudenheim and Marshall, 1988).

The design of the main AARP study involves a two-stage sampling. First, a large number of
randomly selected members are sent an FFQ to complete. Second, a group of the respondents
are selected using stratified random sampling on the basis of their reported intake on a selected
macronutrient of interest, e.g., fat. The stratified sampling ensures that subjects with extremely
high or low reported intakes have a high probability of being selected while those with reported
intakes closer to the average would have a lower probability of selection. Using percent calories from
fat as the intake measure and five strata of intake (<25%, 25-32.5%, 32.5-40%, 40 47.5%, >47.5%),
the initially estimated required sample size for the cohort is 350,000 (Freedman, Schatzkin, and
Wax, 1991b).

Besides the main study, there is also a calibration study. This is an important part of the project,
particularly because there is not wide experience with the results of mailing dietary questionnaires.
There are three main aims of the calibration study: to check on the correlation between the reported
FFQ intake and true usual intake to see if the mailed responses to the questionnaire have adequate
validity, to check on the estimated sample size required in the main study, and to correct relative
risk estimates from the main study.

Participants in the calibration study are to be randomly selected from respondents in the first
stage of the study. Two options for this random selection suggest themselves. First, one might
simply take a simple random sample of the respondents and ask them to complete one or more
FFQs and one or more FRs or, alternatively, one might design the calibration study to parallel the
main study and preferentially select those individuals who report extreme intakes on their FFQs.

1.4 Questions Posed in This Paper

In this paper, we analyze two aspects of the design of the calibration study. First, do we gain or lose
efficiency, especially with regard to questions (a)—(d) in Section 1.2, by taking a stratified random
sample? Second, is it better to obtain many FRs from a moderate number of individuals or only
a small number of FRs on a larger number of individuals? Many researchers take the first option
so that they can characterize usual intake for each individual as accurately as possible. However,
Kaaks et al. (1995) argues that, to achieve optimal adjustment of relative risks, it is better to take
only one FR per person and thus maximize the number of persons in the calibration study. Also,
Rosner and Willett (1988) show that, for estimating the correlation between an FFQ and usual
intake, the optimal design depends on the amount of error in the FRs. We investigate these design
options to see whether the optimal strategy depends on the different possible aims of a calibration
study, as described in Section 1.2.

The second question concerns analysis. Because we are unable to measure usual intake precisely,
we are necessarily in the realm of errors-in-variables analysis (see models (1) and (2) below). It
is our experience that, for simple random sampling, the method of moments and normal-theory
maximum likelihood estimates in linear measurement error models have approximately the same
efficiencies, and hence the former is useful because it has explicit formulas. We investigate these
methods for the case when we sample from strata defined by the values of the response and, as
described below, we show that, in this case, the two methods have surprisingly different behavior.
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The paper is organized as follows. In Section 2, we discuss the linear measurement error model
and place the AARP calibration study into this framework. In Section 3, we discuss estimation
in the context of missing data. The main conceptual device is to place linear errors-in-variables
estimation into the framework of unbiased estimating functions. Using results of Rotnitzky and
Robins (1995), we also show how to obtain the asymptotically optimal estimator that makes no
distributional assumption. Sections 4 and 5 contain numerical results. In Section 6, we discuss the
implications of our results. Some technical details are collected into the Appendix.

2. Statistical Model for Calibration

As described previously, the AARP calibration study involves selecting a random sample from
respondents to the first stage of the main study. At this first stage, for a large number M of
individuals, nutrient intake is measured by an FFQ. In the calibration study, on a smaller number
n of individuals, the FFQ nutrient intake is calibrated against usual intake by measuring nutrient
intake with two or more food records or recalls (FR), possibly together with additional FFQs.

Our analysis is based on the general statistical calibration model of Freedman, Carroll, and Wax
(1991a). They allow for the possibility that one or more FFQs are measured contemporaneously
with FRs and hence that the errors are correlated. Here we will assume the simpler case that the
FFQs and the FRs are measured sufficiently far apart that all errors are uncorrelated.

Consider persons randomly selected to participate in the calibration study. The individual reports
diet using an FFQ on m; occasions (m; > 1) and using an FR on my occasions (my > 2). The
model relating intake of some nutrient (e.g., percent calories from fat) reported on FFQs (denoted
by Q) and intake reported on FRs (denoted by F) to long-term usual intake (denoted by T) is a
standard linear errors-in-variables model, namely,

Qi =Po+B1T+r+¢; Gt Bsarncey TS (1)
F; =T+ Uj; j=1,...,mo. (2)

In model (1), r is called the equation error (Fuller, 1987). The terms ¢; represent the within-
individual variation in FFQs, while the U; are the within-individual variation in FRs.

For example, in the AARP calibration study, an FFQ will be obtained initially, and some months
later an FR will be obtained, followed by a second FR obtained at least 1 month later. Then m; = 1
and mg = 2. If, subsequently, a second FFQ is obtained, then m; = 2.

Among these random variables, T has mean p; and variance af. U; has mean zero and variance
03. €; has mean zero and variance af, and r has mean zero and variance o'?. Note the critical
assumption that U; has mean zero, i.e., that the FR provides an unbiased measurement of dietary
intake. All random variables are uncorrelated, although the methods are easily extended to allow
for correlation between the pairs of measurement errors ¢; and U; corresponding to a questionnaire
being given nearly coincidentally in time to a record or recall. The parameter o2 cannot be estimated
if my = 1, i.e., if there are no replicated FFQs and, in this case, the remaining parameters are
estimated by setting a? = 0; the estimate of o2 then incorporates the contribution of ar? . Jf
ms = 1, then the measurement error variable ¢ cannot be estimated, and it is well known that
B1 cannot then be estimated (Fuller, 1987).

In what follows, it is convenient to reparameterize the problem in terms of means, variances, and
covariances. Make the definitions , = E(Q), 82 = E(T), 83 = var(Q), 84 = cov(Q, F), 85 = var(F),
0 = cov(F1, F2), and 67 = cov(Q1,Qz2). Let ® = (#1,02,...,607)" (where superscript ¢ indicates
transpose), and let ex be the vector of k 1s. All the model parameters can be obtained from @,
specifically,

Br=04/06;  pe =02  Bo=01—0204/0; ot = bg;
0‘.3 = 85 — bg; 0',.2- =0y —933’95: 63 = 03 — 07.
If my = 1, then 67 cannot be estimated and (using the convention that a? =0) o2 =6; — 93 /0.

The possible observed data are summarized as Z = (Q1,...,Qm,, F1, ..., Fm,)!, which has mean
(91c§n1 : Bzefmz )! and covariance matrix

_ [6a1my + 67 (em, e, — Imy) 04em, €, 3)

z®) Baem,em, 05Im3 + fg(em,et, — Ima)
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In the above statistical model, equation (2) indicates an assumption that the food record or
recall is an unbiased estimate of the individual’s usual intake and that the mean of a sufficient
number of repeated FR values is arbitrarily close to the true usual intake. Recent research has
thrown into question this assumption. Plummer and Clayton (1993) showed that protein intake
was underestimated by both food records and recalls compared to values calculated from 24-
hour urinary nitrogen excretion that are thought to be close to true intake, while Heitmann and
Lissner (1995) showed that food records underestimated total energy intake compared to more
exact values calculated by the double-labeled water method, However, it is still unclear whether
nutrient densities, in particular percent calories from fat, are also underestimated or whether there
is a general underreporting phenomenon that applies equally to all nutrients. If some nutrients,
such as fat, are underreported more than others, then our model would indeed be misspecified. The
implications of such possible misspecification for the adjustment of disease relative risks obtained
from nutritional epidemiologic studies is an area of active development (see Prentice, 1996; Carroll
et al., 1998). However, if the underreporting is general, i.e., applies as equally to fat as to other
nutrients, then our model is a reasonable one, and we proceed on that basis for this paper.

3. The Two-Stage Study as a Missing Data Problem

3.1 Introduction

Because the AARP main study will preferentially select individuals who report more extreme levels
of dietary intake, we may wish the calibration study to have similar composition. We therefore
consider a calibration design where sampling is done in two stages. At the first stage, we observe
the FFQs Qi for M individuals, ¢ = 1,... .M. Then at the sccond stage, the calibration study,
with probability m(Q;1), we observe the mg FRs (Fi1, ..., Fim,) and the remaining m; — 1 FFQs
(Qizy -+ Qim,)- Ifan individual is selected into the calibration study, we set A; = 1, and otherwise
we set A; = 0. The sampling weights are w; = 1/7(Qi1), the inverses of the probabilities of selection.
In typical applications, the size of the calibration study is fixed, say to n observations, so that the
A’s are correlated.

This formulation allows for simple random sampling by setting 7(Q) to be a constant, ie.,
independent of the report from the first FFQ. The classical linear measurement error model
assumes complete sampling so that all individuals participate in the calibration study, and hence
A= ‘.IT(Q“) =1

It is important to observe that this formulation is that of a missing data problem, wherein the
FRs and the supplementary FFQs are missing for many individuals. As a result of the design, the
data are missing at random, i.e., missingness depends only on the value of the first FFQ and not
on the unobserved FFQs or FRs.

The purpose of this section is to discuss various estimation strategies. In Section 3.2, we discuss
two basic estimating functions for complete data, one based on the method of moments and one
based on maximum likelihood estimation. Section 3.3 describes adaptations of these estimating
functions that allow for the missing data pattern of the AARP study. Section 3.4 gives some
explicit details of the AARP study, which form the basis of all our later calculations. In practice,
the sampling probabilities and hence the sampling weights are unknown and must be estimated
(see also Section 3.4).

3.2 Method of Moments and Model Robustness

The typical measurement error model formulation has no missing data. The problem then is the
classical linear measurement error model covered so admirably by Fuller (1987). With no missing
data, there are two types of estimates in common use:

(a) Method of moments estimators expressed in terms of the model parameters px, a2.... and thus
indirectly in terms of ©. This is effectively the method used by Fuller (1987, pp. 106-108), and
we will take it to be the default measurement error analysis.

(b) Maximum likelihood estimators assuming that all random variables are normally distributed
and expressed in terms of the model parameters .

With no missing data, these estimators can be expressed in terms of solutions to unbiased
estimating equations. These methods solve equations of the form

u:zip(zi,e). (4)
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In what follows, i refers to the individual, Q;; is the jth FFQ for the 4th individual, Q;. is the
within-individual mean, and similarly for F}; and F;.. Also, m; is the number of FFQs for each
individual and my is the number of FRs. We use the term I(m; > 1) to be the indicator that
my > 1.

With no missing data, the estimating function for the method of moments is given by
= F: — =
72 (Fij = Fi.)? — (mg - 1)a,

1 F, e { Bo
@ iom (Zi-e} = 3 F"E —aﬁ/mg Qi.p‘ ﬁ]

) (Fy. — w)? = ot /my = of
(Qi. — Bo — BLF.)? — a?/my — Blo2 /my — o?
L Qi = Qi)? = (my — 1)o? 1

When there is only one FFQ (m; = 1), we set 62 = 0 and remove the last component of this
estimating function. The rows of ¥mom (Z;, @) can be described as follows. Each row determines a
parameter, i.e., row 1, mean of usual intake; row 2, within-individual measurement error variance
in FRs; rows 34, intercept and slope of the regression model; row 5, variance of usual intake; row
6, equation error variance; row 7, within-individual error variance in FFQs.

The estimating function for the maximum likelihood estimator when there are no missing data
is given in the Appendix, Section A.1.

3.3 Model Robustness and Missing Data

When there are no missing data, by solving (4), the method of moments and the maximum
likelihood estimators are consistent and asymptotically normally distributed without restrictions as
to the distributions of the random variables in the model. Of course, the asymptotic distributions
depend on the underlying random variables, so that normal-theory information standard errors are
valid only if all random variables are normally distributed. Otherwise, the simplest technique is to
use sandwich standard errors: this is an old idea dating back at least to Huber (1967). There is
also a sandwich-type theory of likelihood-ratio tests (see Huber, 1967; Kent, 1982).

With missing data, if the probability of selection into the calibration study is 7(Q;1 ), then we can
construct consistent estimates as follows. For the method of moments, we use only the validation
data and weight it inversely with the selection probabilities, thus solving

M
0= ZAzwmnm(ziaejr‘!“(Qil)‘ [5)

i=1

This approach is, of course, the well-known Horvitz-Thompson method (Horvitz and Thompson,
1952).

With missing data, the moments estimate obtained through solving (5) is still consistent and
asymptotically normal even without assuming normality. The normal-theory maximum likelihood
estimator, however, does not share this property. Here is a subtle point. This likelihood estimator,
which ignores the missing data mechanism, may give inconsistent parameter estimates if the random
variables are not all normally distributed. A brief explanation is given in the Appendix, Section
A2,

One can modify the likelihood estimator using the Horvitz-Thompson device to make it
distribution-free, just as in (5). However, an asymptotically more efficient distribution-free estimator
can be derived as follows.

The problem of estimating @ without making any distributional assumptions is semiparametric
in the sense that parametric restrictions are made on the relationship of the means and variances of
what we have called Z, while the underlying distributions are nonparametric. Optimal estimation
of @ in such a context has been discussed by Rotnitzky and Robins (1995). Here we discuss their
methods and adapt them to our problem. We do not justify any of the theoretical claims made
here, as they are either proved by Rotnitzky and Robins or simple consequences of their arguments.

Let R be the vector of all individual elements of Z and their cross products. For example, if
my=1land my =2, 2= (Q,F,F,) and R = (Q1, F1, F2,Q}. Q1 Fi, Q1 F3, F, F3, F1 F3)*. Let
g(@)=E(R) and »(@) = R — g(@). Of course, since we have specified the mean and covariance
matrix of Z, g(© ) can be computed without reference to underlying distributions. Define A = 1 if
an observation is selected into the calibration study and A = 0 otherwise. Define
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t
L= {%3(9)} ;
A{R-E(R| @)}
m(Q1)
T1(@) =cov{x(Z,A,0)};

T©) = (L7 ')

x(Z,A,0) = +E(R|Q1)—g(®@);

Rotnitzky and Robins (1995) prove that the best that any semiparametric estimator of © can
achieve is an asymptotic covariance matrix of M~ '73(@). They further show that the optimal
estimating function for achieving this covariance matrix is to solve

M
0= L{Ti(6)} 'x(Z;,Ai6). (6)

=1

It is not entirely obvious that (6) is an unbiased estimating equation. To see this, one has to compute
the expectation of x(Z, A, @), which has two terms. The first, A{R —E(R | Q;)} /7(Q1), has
mean zero because of the usual Horvitz-Thompson argument, namely complete data (A = 1) are
being weighted inverse with their selection probabilities w(Q;). The second term has mean zero
since g(©) = E(R) = E{E(R | Q1)}.

This development has one unfortunate catch, namely that, as defined, implementation of (6) is
impossible because 7] and even x itself depend on the underlying distributions. There are effectively
two ways to implement the procedure:

(a) Use nonparametric regression techniques to estimate 7; and x. This gives global asymptotic
efficiency but is computationally burdensome and it is unclear if the asymptotics will agree
with small sample behavior.

(b) Assume a parametric model for Z only for the purposes of calculating 73 and x. The resulting
estimate is (locally) efficient if the parametric model actually holds, and it can be shown that
the estimate is consistent even if the assumed parametric model is not correctly specified.

Since for our purposes we are contrasting the various estimators at the normal distribution
anyway, we have followed method (b) with Z assumed to have the multivariate normal distribution.
In this case, 77 and x have closed-form expressions that are easily calculated.

We have calculated the asymptotic covariance matrix of the optimal semiparametric estimator
when Z is normally distributed and found that in a wide variety of cases it is essentially the same
as that obtained from the Horvitz-Thompson method of moments estimators given in (5). This
may not be the case away from the normal distribution, and it is an interesting problem for further
study to see if major differences arise with departures from the normal distribution.

3.4 The AARP Study, Missing Data, and Sampling Weights

At the first stage of the AARP calibration study, FFQs are mailed to several tens of thousands
of members of the AARP randomly selected within certain states. From these FFQs, individuals
reporting extreme patterns of food intake are preferentially selected into the calibration study.
Suppose that the pattern of intake is quantified by the percent of energy intake contributed by fat
(% Calories from Fat). The reported intakes from the FFQ will help to characterize the distribution
of a single FFQ report on % Calories from Fat. Suppose we wish to include in the calibration study
the following proportions of individuals: 20% having Q;, < 25, 15% with 25 < Q;; < 32.5, 10%
with 32.5 < Qi1 < 40, 15% with 40 < Q;; < 47.5, and 40% with 47.5 < Q;.

To get some idea of the sampling fractions needed to achieve this, we use the distribution of
% Calories from Fat as estimated from the FFQ report in the 1987 National Health Information
Survey (NHIS) and in the Women’s Health Trial Vanguard Study (Henderson et al., 1990). The
estimated mean and variance are 38.25 and 57.76, respectively, and the distribution appears to
be reasonably close to normality. We then estimate (using the normality assumption) that, in
the AARP study, the selection probabilities should be 1.0, .178, .064, .126, and .962, depending
on whether the observed % Calories from Fat lies in 0-25, 25-32.5, 32.5-40, 40-47.5, and >47.5,
respectively.

In our numerical work, we will consider the two cases depending on whether the sampling weights
are known or estimated. Based on the description in the previous paragraph, to know the weights,
we require that the distribution of FFQs is known. This is typically unreasonable in practice, but
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in the AARP study, the initial sample size will be so large that, at least at a first level of
approximation, the distribution of intakes from FFQs will be effectively known, as will the mean
#1 and variance 3.

In other studies, the initial survey of FFQs will not be so large, and then 8y, 63, and the sampling
probabilities must be estimated for all but the normal-theory maximum likelihood estimate. This
need not be a bad thing. Robins, Rotnitzky, and Zhao (1994) have shown that such estimation can
improve the large-sample properties of Horvitz-Thompson estimators. The obvious nonparametric
estimate of the sampling probability in each stratum formed by the initial FFQs is the proportion
of individuals in the stratum who are selected into the calibration study.

4. More Individuals or More Food Reports?

When designing the calibration study, there are options regarding the numbers of individuals
and how many FRs each case completes. For example, one might obtain just two FRs on many
individuals or obtain many FRs but on fewer individuals. Put simply, if one can afford to obtain
4000 FRs, which is the better design option, (a) four FRs on each of 1000 individuals or (b) two
FRs on each of 2000 individuals?

Of course, these two designs are not strictly comparable in terms of cost, but they may be nearly
so. A design such as (b) incurs more recruitment costs. However, design (a) risks a high dropout
rate due to study participants becoming progressively less cooperative; such dropouts not only
may bias the analysis but lead to greatly increased costs by attempting to obtain complete records
on each individual. Another potential difficulty with observing many FRs on individuals is the
possibility of systematic time trends.

As mentioned in the Introduction, the parameters of direct interest in the AARP study are
poT = 04/ {938“)1/ 2. the correlation between intakes from a single FFQ and true usual intake, and
the total number N of cancer cases that need to be observed in the main study to achieve 90%
power for detecting a plausible and worthwhile effect. Also of interest is the slope 3;. Freedman et
al. (1990) give a formula for N.

Whether design option (a) or (b) is preferred may depend on the parameter being estimated
as well as on the within-individual error variance in FRs (02) relative to the sum of the variance
of FFQs about the line (¢2) plus the within-individual error variance in FFQs (02). If FRs are
relatively precise, then it may be better to select option (b) and maximize the number of individuals
in the calibration study. As the FRs become relatively less precise, a switch may occur and it may
become more efficient to select design option (a) and take more replicates per person. The switch
point may vary according to the parameter being estimated.

We investigate these points first theoretically and then via computer simulation. All calculations
use parameters in the model (1)—(2) as estimated via the techniques of Freedman et al. (1991a)
for % Calories from Fat as determined by the 1987 NHIS and the Women’s Health Trial Vanguard
Study (WHTVS), namely p; = 38.25, 07 = 24.45, 02 + 07 = 40.92, 02 = 30.36, By = 5.95, and
B = .83. These values are consistent with var(Q) = 57.76 mentioned earlier. The WHTVS used
food records; if 24-hour recalls are used, o2 is typically larger, and to incorporate this, we did
calculations also in the case that aﬁ = 83.35, a number obtained by an analysis of the CSFII
(Continuing Survey of Food Intake by Individuals) data from the U.S. Department of Agriculture.

4.1 Theoretical Calculations

We first consider theoretical calculations, which are based on the classical technique of Fisher
information theory for the maximum likelihood estimator (Cox and Hinkley, 1981). We assume
that, initially, FFQs are obtained on M randomly selected individuals and then FRs are obtained
on a calibration subsample of size n. The calculations are standard if this second stage is selected
completely at random and if M is infinite so as to essentially completely characterize the distribution
of a single FFQ; we will use both assumptions in our theory. Computer simulations will be used
to show that the same results apply even when selection into the calibration study depends on the
initial FFQ and even if M is finite.

The results of the theoretical calculations are displayed in Figure 1, where we compare design
options (a) and (b), described in the previous subsection. We allowed the within-individual error
variance in FRs to vary between 0.0 and 150.0 (remember, o2 a 30.36 for food diaries, while
02 ~ 83.35 for 24-hour recalls). As a function of the measurement error variance o2 in the FRs,
this figure compares the ratio of the theoretical (asymptotic) standard deviation for estimates of
three parameters of interest: the correlation pgr, the slope £1, and the required number of cancer
cases N for n = 2000 FRs and mg2 = 2 replicates (option b) to n = 1000 FRs and ms = 4 replicates
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s.e. n=2000, 2 FD/FR /s.e. n=1000, 4 FD/FR

14

12

More FD/FR

s.d. Ratio
1.0

08

0.6

0 50 100 150

FR Error Variance

Figure 1. A two-stage calibration study, such as contained within the AARP, with a large number
of initial FFQs, under the parameter configurations o2 = 40.92, pr = 38.25, af = 24.45, 3y = 5.95,
and #; = .83. As a function of the measurement error variance o7 in the FRs, this figure compares
the ratio of the asymptotic standard deviation for estimates of por (rho in the figure), 4 (beta),
and the sample size N (N) for n = 2000 FRs and mg = 2 replicates to n = 1000 FRs and ma =4
replicates.

(option a). Values of this ratio that are greater than 1.0 indicate that it is better to obtain many
FRs on fewer individuals.

The results in Figure 1 are instructive. For our estimate of the within-individual variance of food
diaries (02 = 30.36), we see that, for estimating N, f;, and PQT, it is more efficient to obtain
fewer food records on many individuals (the ratio is less than 1.0). However, for our estimate of
the within-individual variance of 24-hour recalls (02 = 83.35), we see that, especially for 3y, it
is more efficient to obtain more recalls on less individuals and, to a lesser extent, the same holds
for por. Interestingly, and for the considered range of the within-individual variance of FRs, for
determining the required number of cancer cases N, it is more efficient to obtain only two FRs,
both for food diaries and for 24-hour recalls.

The calculations we have done are easily extended in principle to the maximum likelihood
estimator under stratified random sampling. Using the theory of estimating equations (Huber,
1967), similar calculations can be performed for the method of moments under either form of
sampling.
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4.1 Simulations for Simple Random Selection

'The simulations we have done all agree qualitatively with the theoretical calculations, even when the
simulations are applied to stratified sampling (unlike the theory presented here). Numerical results
are given in the top half of Tables 1 and 2 for food diaries and in Table 3 for 24-hour recalls. We
have listed mean squared crrors and standard deviations. There is a small technical problem with
listing mean squared errors because Fuller (1987) shows that, in fact, they do not exist theoretically.
The problem is that there is a positive probability that the estimated variance of usual intake will
equal zero although, with the sample sizes of calibration studies used in the simulations, this chance
is so small as to be of no practical concern. Thus, in our particular simulations, this issue was not
a problem because we checked the results against a more robust measure of variation, the median
absolute deviation from the median, and found no real differences from the results reported here.
For smaller calibration studies, this problem of nearly zero estimated variance of usual intake could
arise, however. In such cases, the method of moments estimator would be modified as in Section
2.5.1 of Fuller (1987), while the maximum likelihood estimate would probably be best made more
stable by Bayesian techniques.

The estimators reported are the normal-theory maximum likelihood estimator and the method of
moments estimator, namely solving (5); similar results with respect to design considerations were
found for the other distribution-free estimators.

For food records (a'ﬁ = 30.36), using a larger number of records per individual and fewer
individuals is clearly less efficient than using a smaller number of records per individual and more
individuals, whether for estimating the slope 81, the correlation pgr, or the required number of
cases N. For food recalls (53 — 83.35), we still see that it is more efficient to use fewer rather than

Table 1
Simulation results using food records (FR) and one food frequency questionnaire
(FFQ) with a = 5.95, 8 = .83, 02 = 16.207, 0 = 24.71, p¢ = 38.253, of = 24.449,
02 = 30.36. By “Selection on the Basis of FFQ,” we mean stratified sampling within
ranges of FFQ reported values. The value of n is the number of individuals in the
calibration study. The terms por and N refer to the estimate of the correlation between
an FFQ and usual intake and the estimated required number of cancer cases, respectively.
The method of moments uses the standard parameterization as defined in the text.

Method of moments Maximum likelihood

n FRs MSEJB MSEpgr MeanN sd. N MSEB MSE por Mean N sd. N

Selection at Random, o2 = 30.36

200 8 1014 .0562 2508 721 0851 0534 2509 722
400 4 .0840 .0431 2457 501 .0706 .0403 2461 503
800 2 0707 .0358 2393 390 0648 .0344 2396 390
500 8 .0646 .0359 2411 433 0541 .0342 2442 433
1000 4 .0497 .0271 2397 302 .0431 .0260 2398 301
2000 2 .0489 .0239 2389 240 .0443 0227 2391 240
800 8 .0512 0279 2385 313 0408 0261 2386 312
1600 4 .0407 0221 2390 240 0351 0211 2391 241
3200 2 .0368 .0181 2380 188 0337 0174 2380 188
Selection on the Basis of F¥Q, o2 = 30.36
200 8 1192 {0581 2484 649 0785 0373 2415 403
400 4 .0975 .0443 2430 475 0656 0312 2395 322
800 2 .0992 .0430 2408 393 0673 0282 2385 249
500 8 0744 03567 2417 389 .0482 .0232 2387 250
1000 4 .0629 L0295 2398 302 .0416 .0193 2385 193
2000 2 .0585 0255 2395 239 0389 .0168 2384 157
800 8 .0590 .0288 2377 288 0373 .0184 2380 193
1600 4 .0496 .0230 2389 221 0317 .0148 2377 147
3200 2 0481 0209 2384 192 .0311 .0133 2375 125
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Table 2

Sirnulation results using food records (FR) and two food frequency
questionnaires (FFQ) with a = 5.95, § = .83, 02 = 16.207, 02 = 24.71, py
= 38.253, of = 24.449, o2 = 30.36. See Table | for definition of terms.

Method of moments

Maximum likelihood

n FRs MSEB MSEpor Mean N sd. N MSES MSEpor Mean N sd N
Selection at Random, o2 = 30.36
200 8 0921 0498 2499 624 0733 0451 2496 618
400 4 0693 0373 2436 448 0610 10349 2434 444
800 2 0651 0304 2403 333 0615 L0290 2405 332
500 8  .0544 .0299 2391 355  .0444 0269 2390 349
1000 4 0442 .0230 2396 260  .0373 0210 2395 258
2000 2 0405 .0198 2393 209  .0373 0186 2393 206
800 8  .0421 .0236 2391 273 .0340 0214 2388 270
1600 4 0362 .0193 2377 208 0305 0174 2375 203
3200 2 .0336 0161 2380 160 0309 0151 2380 167
Selection on the Basis of FFQ, ¢2 = 30.36
200 8 1109 0537 2471 659 0700 0339 2413 392
400 4 0919 0419 2451 478 0583 10263 2396 281
800 2 0948 10392 2413 372 0620 0251 2386 225
500 8 0682 0331 2410 393 0431 10209 2395 239
1000 4 0565 10265 2387 289  .0357 0167 2375 181
2000 2 0572 0244 2387 236 .0367 0151 2376 144
800 8 0549 0271 2421 309 .0337 0170 2389 193
1600 4 0442 0211 2373 226 .0293 0136 2376 146
3200 2 0453 .0200 2386 192 .0307 0123 2373 112
Table 3

Simulation results using 24-hour recalls (24-FR) with a = 5.95, 3 = .83, o2 = 16.207, o?
= 24.71, pe = 38.253, o = 24.449, o2 = 83.35. By “Selection on the Basis of FFQ,” we mean
stratified sampling within ranges of FFQ reported values. The value of n is the number of
individuals in the calibration study. The terms pop and N refer to the estimate of the correlation
between an FFQ and usual intake and the estimated required number of cancer cases, respectively.

Method of moments

Maximum likelihood

FRs MSES MSEpgr Mean N sd. N MSES MSEpgr Mean N sd. N

n
Selection at Random, 03 = 83.35
500 8 0759 0408 2404 473 0679 0394 2406 473
1000 4 0738 L0363 2403 379 689 .0349 2407 378
2000 2 0832 L0356 2387 330 L0817 .0354 2391 330
Selection on the Basis of FFQ, 02 = 83.35
500 8 1022 .0443 2419 443 0632 0288 2396 291
1000 4 1051 0424 2402 358 0662 0272 2383 231
2000 2 .1392 .0517 2404 340 .0814 10302 2372 206
Selection at Random, o2 = 83.35
500 8 0657 .0342 2397 396 0667 0312 2395 390
1000 4 0650 .0303 2401 326 0628 0296 2404 326
2000 2 L0816 L0324 2398 287 0800 .0318 2390 286
Selection on the Basis of FFQ, o2 = 83.35
500 8 0917 0413 2410 451 0594 0263 2383 273
1000 4 0912 {0386 2420 374 0588 .0240 2395 227
2000 2 1247 0464 2420 359 0801 0284 2393 194
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more records per individual for estimating the required number of cases, but m = 4 records per
individual appears to be somewhat more efficient than m = 2 records per individual for estimating
the slope ) and the correlation pgy.

4.3 Effects of Stratified Sampling

In the AARP calibration study, stratified sampling appears attractive so as to parallel the stratified
nature of the main study. Here we study the statistical issue of stratified versus completely random
sampling into the calibration substudy (Tables 1-3).

The results are striking. Both asymptotic theory (not reported here) and simulations indicate
that, for the distribution-free methods, stratification causes a decrease in efficiency of estimation,
particularly for the slope 8 and in some cases for the correlation pgr. There is also some decrease
in efficiency for estimating the required number of cancer cases N, although the effect is not large.

Exactly the opposite results obtain for the normal-theory maximum likelihood estimator. Here
we see that there is not much effect due to the design for estimating the slope #;, but now the
stratified design leads to noticeably smaller variability in the correlation pQT and the required
number of cancer cases N,

4.4 Number of FFQs

Tables 1-3 are simulations based on an infinite number (M) of initial FFQs. Obviously, in practice
M will be finite, so we ran simulations with M = 15,000 initial FFQs, which is the target for the
AARP study. The results are reported in Table 4 and should be compared to Table 1. There are
essentially no differences between the tabulated value for M = oo and M = 15,000.

5. Parametric or Semiparametric Analysis?

As stated previously, under simple random sampling into the calibration study, our experience in
this and other problems has been that distribution-free estimates and the normal-theory maximum
likelihood estimate behave similarly. Tables 1-3 report results for random selection for the maximum
likelihood estimator and the method of moments estimator (5), and while there are some differences,
they are typically fairly minor, as expected. The semiparametric efficient estimator (6) is equivalent
to the maximum likelihood estimator in this case.

It is when selection into the calibration study depends on the initial response that we see major
differences (Tables 1-3). While we report results only for the method of moments estimator (5), the
semiparametric efficient distribution-free method (6) gave similar results. Both are vastly inferior
to the normal-theory maximum likelihood estimator. For estimating the slope 8, the correlation
PQT, or the required number of cancer cases N, the maximum likelihood estimator has less than
50% of the variance of the semiparametric methods. The inefficiency of the semiparametric estim-

Table 4
Simulation results using two food records (FR, o2 = 30.36) and two 24-hour recalls
(24-FR, o = 83.35) with o = 5.95, 8 = .83, 07 = 16.207, 02 = 24.71, p; = 38.253, o2
= 24.449. Here we use stratified sampling within ranges of FFQ reported values, where the
wnitial survey consists of 15,000 FFQs. The value of n is the number of individuals in the
calibration study. The terms poT and N refer to the estimate of the correlation between
an FFQ and usual intake and the estimated required number of cancer cases, respectively.

Method of moments Maximum likelihood

n FRs MSESB MSEpgr MeanN sd. N MSE@ MSEpgr Mean N sd. N

Single FFQ, Two FRs
Selection on the Basis of 15,000 Initial FFQs, aﬁ = 30.36

500 8 .0744 .0368 2393 384 0492 .0236 2381 250
1000 4 0600 0287 2390 299 .0405 .0191 2377 192
2000 2 0602 .0261 2407 244 .0384 .0166 2381 158

Single FFQ, Two 24-FRs
Selection on the Basis of 15,000 Initial FFQs, o2 = 83.35

500 8 .0966 .0443 2426 453 0631 .0292 2391 292
1000 4 .0979 .0415 2444 394 .0659 .0271 2392 245
2000 2 1288 .0484 2416 359 .0851 .0304 2389 207
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ator is not due to the implementation described in Section 3.3 but instead is due to the non-
parametric aspect of the procedure.

6. Discussion

A major point of our paper is that calibration studies may not always be designed simply to
provide data to adjust relative risks in a larger study, although we agree that such adjustment is
indeed an important aspect. For example, calibration studies should be used in the development
of new measurement instruments to test whether the new measurement provides improvement
over currently used methods. In this context, the correlation between the instrument and the true
measurement (cf., po7) would be of primary interest, and measures of bias (cf., By and 3,) would
also be important. As in the AARP study, calibration substudies may also be planned as part of the
design phase in which design assumptions are checked. In this case, a central question is whether
the designed sample size of the main study is justified. Our paper therefore addresses the design of
calibration studies from a wider perspective than heretofore.

With regard to the question of the number of food reports per individual in the calibration study,
our results are summarized in Table 5. They suggest that the conclusions of Kaaks et al. (1995) and
Stram et al. (1995) that fewer repeat measurements on more individuals provides greater efficiency
is not completely general. Indeed, this was already demonstrated by Rosner and Willett (1988),
who showed that, for estimating the correlation between an FFQ and usual intake, the size of the
measurement error in the FFQ and the FRs determine the optimal strategy. We have demonstrated
as well that the optimal balance of repeats and individuals depends on the primary aim of the
calibration study as well as on the within-individual variation of the repeated measurements. We
should note, however, that for the particular parameters of our simulations, there were no cases
where the choice of two repeats per individual was much worse than four repeats on half the number
of individuals, indicating that in our case the amount of within-individual variation, even in 24-hour
recalls, was not enough to depart from the policy of maximizing the number of individuals. From
Figure 1, though, it is clearly quite possible that such a policy could be seriously in error in other
circumstances.

It is worth emphasizing that, as described in Section 1.2, Kaaks et al. (1995) and Stram et al.
(1995) have shown that, for estimating the attenuation in relative risk due to using FFQs, i.e., the
slope in the regression of usual intake on the FFQ, the optimal choice is to obtain only a single FR
in the calibration study. Independent of whether the calibration study is based on simple random
or stratified sampling, the natural (and normal-theory maximum likelihood estimate) of this slope
is the ordinary least squares regression slope when regressing the mean of the within-person FRs
on the FFQ. If one has a choice between a calibration study of size n with k FRs per individual or a
calibration study of size nk with one FR per individual, then, independent of the sampling design
(simple random or stratified), the ratio of the variance of the attenuation for the first strategy
relative to the second is

k(1 — pgyp +w/k)
1- p2QT +w

Table 5
For various problems, the minimum number of FRs required in
a calibration study (Min number) and the optimal number (Optimal number)

Problem Min number Optimal number
Correcting relative risks
using regression calibration 1 1
Estimating required number of cases 1 or 2, depending Same as
to detect effect at a given power on method used Min number
Estimating correlation por 2 No uniform answer

Estimating slope 3, 2 No uniform answer
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where w = o /of (see Kaaks et al., 1995). For the parameter configurations used in our simulations,
the ratio is 1.35 for & = 2 versus k = 1 FRs per individual when using food records and 1.17 when
using 24-hour recalls.

The results regarding the advisability of stratified sampling into calibration studies do not
provide a clear answer because gains in efficiency are made under one analysis strategy (maximum
likelihood) and losses are made under the other strategy (method of moments). As we have
emphasized, the likelihood approach is valid only if the parametric structure is correctly specified.
Likelihood methods require statistical models for the distribution of the true variate 7. There has
traditionally been considerable concern in the measurement error literature about the robustness
of estimation and inferences based on parametric models for unobservable variates. Fuller (1987, p.
263) discusses this issue briefly in the classic nonlinear regression problem and basically concludes
that the results of parametric modeling “may depend heavily on the {assumed) form of the (T')
distribution.” In probit regression, Carroll et al. (1984) report that, if one assumes T is normally
distributed and it really follows a chi-squared distribution with one degree of freedom, then the
effect on the likelihood estimate is markedly negative. Similar results are reported by Schafer (1987).
Essentially, all research workers in the measurement error field come to a common conclusion:
likelihood methods can be of considerable value, but the possible nonrobustness of inference due
to model misspecification is a vexing and difficult problem.

The issue of model robustness is hardly limited to measurement error modeling. Indeed, it
pervades statistics and has led to the rise of a variety of semiparametric and nonparametric
techniques. There is simply no agreement in the statistical literature as to whether semi/non-
parametric or parametric modeling is more appropriate. Many researchers strongly believe that
one should make as few model assumptions as possible. The argument here is that any extra
efficiency gained by parametric modeling is more than offset by the need to perform careful and
often time-consuming sensitivity analyses. Other researchers believe that appropriate statistical
analysis requires one to do one’s best to model every feature of the data, arguing in our context
that it makes little sense to needlessly double the variance of parameter estimates.

The obvious question is whether the maximum likelihood estimate is actually sensitive in this
context to model misspecification. We have run simulations with T having a scaled and translated
negative exponential distribution and found that the normal-theory maximum likelihood estimate
of B, is badly biased downwards, and this translates into a bias in the estimate of pgp. For instance,
for the parameters in Table 1, 31 = .83 and pgr = .54, while in the simulations the averages are .62
and .49, respectively. While these biases are considerable, we note that, based on simulations, the
5%-level Anderson—Darling test for normality has power over 80% for detecting the nonnormality
caused by the nonnormal distribution of T for as few as 2000 FFQs, and for larger sample sizes
such as in the AARP study, the power is nearly 100%. The point here is that, while a misspecified
likelihood analysis leads to badly biased estimates, in practice, it is not impossible to detect the
model misspecification, even with the large amounts of measurement error inherent in nutritional
intake data.

A practical question is whether one can ever reasonably assume normality. With a stratified
design, of course, the observed FRs will not be normally distributed anyway, and so distributional
modeling is easiest for the FFQs. It is often the case that nutrition data are transformed directly
to normality (Nusser et al., 1996, give one such approach), and the analysis is then done on the
transformed scale. If one is willing to assume that when transformed FFQs are normally distributed
s0 too are their (transformed) component parts T and € as well as the FRs, then the modeling issue
is solved.

A referee has also brought up the valuable point that one way to check the distributional model
in stratified samples, albeit indirectly, is to evaluate the linearity and normality of the regression
of FRs on FFQs.

For % Calories from Fat, the nutrient intakes from many data sets appear reasonably normally
distributed. In Table 6, we review the evidence of five studies with various instruments, noting that,
for the eight situations surveyed, six are reasonably normally distributed (and pass the Anderson
Darling test with level >.05), one exhibits light-tailedness (Nurses Health Study, 4-day diaries),
and another appears to be heavy-tailed (NHANES, 24-hour recalls). The latter is the only situation
where one might expect that a parametric analysis assuming normality might be badly biased.

Since, as we have argued above, % Calories from Fat often does appear to follow a normal
distribution, our results indicate that in our case it would make sense to adopt a maximum likelihood
approach, and consequently, stratified sampling would appear beneficial. In general, however, we
are not foolhardy enough to recommend one or the other approach. The important point is that
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Table 6
Tests for normality for the variable % Calories from Fat for various nutrition data sets.
The 5% significance level for the A-D (Anderson-Darling) test is .78. Definition of
acronyms: WISH (Women’s Interview Survey of Health), CSFII ( Continuing Survey
of Food Intake by Individuals), NHANES (National Health and Nutrition Examination
Survey), NHS (Nurses’ Health Study), WHTVS (Women’s Health Trial Vanguard Study).

No. instruments  Sample

Study Instrument per participant size Skewness  Kurtosis A-D Test
WISH FFQ 1 271 -.12 3.24 68
WISH 24-hour recall 6 271 -.31 3.28 .49
CSFII 24-hour recall 3 1706 .01 3.42 71
NHANES 24-hour recall 1 3145 .08 3.65 1.61
NHS FFQ 1 168 13 3.60 .29
NHS 4-day diary 4 168 —.29 2.38 91
WHTVS FFQ 3 86 .16 2.58 42
WHTVS 4-day diary 2 86 —.bd 3.35 AT

we have identified a practical problem in which there is a surprisingly large difference between
parametric and semiparametric modeling.
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RESUME

Nous étudions, en nous appuyant sur un exemple en épidémiologie de la nutrition, quelques aspects
d’analyse et de d'élaboration de mesures d’erreurs dans des modeles linéaires avec des données
auxiliaires manquantes. Le contexte étudié est celui d’un grand échantillon initial dans lequel
la réponse (un questionnaire de fréquence alimentaire, FFQ) est observée ainsi qu'une étude de
calibration moins importante dans laquelle on dispose de répétitions de I'erreur de prédiction
(enregistrements alimentaires ou rappels sur consommation, FR). La différence entre notre analyse
et la plupart des modeles de mesure d’erreurs de la littérature est que, dans notre étude, la sélection
dans I'étude de calibration peut dépendre de la valeur de la réponse. Un exposé raisonné de co
type d’étude est présenté. Deux problémes majours sont étudiés. Dans la conception d'une étude
de calibration nous avons la possibilité d’avoir soit des échantillons de grande taille et peu de
répétitions ou bien des échantillons de petite taille et plus de répétitions. Il est montré, de fagon
un peu surprenante, qu’aucune stratégle n'est uniformément meilleure dans des cas pratiques. Les
réponses dépendent de I'instrument utilisé (rappels ou enregistrements) et des parametres d’intérét.
Le second point étudié est un probleme d’analyse. Dans des modeles linéaires usuels sans données
manquantes les estimations obtenues par la méthode des moments et ceux de la théorie normale du
maximum de vraisemblance sont approximativement équivalents, avec une utilisation plus fréquente
de la premiére méthodes en raison d’un calcul facile et explicite. Les deux estimations sont valides
sans besoin d’hypothéses distributionnelles. Par contre, dans le cas de données manquantes, scule
la méthode des moments reste applicable sans nécessiter de poser des hypotheéses distributionnelles
alors que I'estimation du maximum de vraisemblance a une précision au moins 50% plus importante
dans des situations pratiques lorsque 'on peut admettre la normalité. Les conséquences pour les
études de calibration de dispositifs d’enquétes en nutrition sont discutées.
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APPENDIX

Al. Estimating Function for the Normal-Theory Maximum Likelihood

We first write the estimating function and its derivatives for the case in which there are no missing
data. Recall that X (@) is the covariance matrix of all the data (see (3)). Let the partial derivatives
of this matrix with respect to an arbitrary 6; be given by

_ o
i~ B8,
a0,
where the derivative is componentwise. Then, using matrix derivatives, the estimating function for

the maximum likelihood estimator when computed on all the data Z can be shown to equal (the
numerical ordering appears slightly odd but is convenient later)

P z(e),

m Z,
L (Z,S) a {:m:‘,; ((Z,g;] - {el [Z'e)‘£3(Z,9)'f2{z,9),f4(Z.9)v : '}t !
where
em, g _1 Blem.u
fl(zue): (U-emg) z (9} {z_(eﬂe‘rrl'z)}‘
t

£5(Z,0) = (Dee“‘) z7Y(6) {Z - (Z;Kl )}

and, for j > 3,

¢;(2,8) = — (1/2)trace { ' (©)P;}

P - t B R 6 .
+(1/2) {z— (alzm)} s~ Ye)p;=71(8) {z— (e:m)}

Again using matrix derivatives, the Hessian of the my FFQs and the mg FRs can be computed
explicitly as follows. Let

t t
fiem fiem t biem fiem
A(0,02) =2Z2" - Z v - L)zt + ! Eq
(61,02) (9237.-12 ) (gzemz) f2ema faem,
The Hessian of (£1,£2,- .. 7)) isaTxT matrix with elements hik(@), where
t
€, - | em,
hin = - e
1 (0-97”2) = )(O'Gxnz),
e e 0-e
o my -1 " Emy
hi2 = (u-em,) z {9)( Gy )

t
0' i 0' e
h22=—( e’“‘)sl{e)( e'),
€my €y
and, for j,k = 3,

t
em, -1 -1 aleﬂh
= 57 " -
(0 _ em) (e)P;x (8) {z (ege,,u )} ;
t
0-em\ - o 0
haj = -( e:';*) z~(e)P;= ‘(9){2—(9:;:;)},

(1/2)trace {7 (8)PrZ " "e)P;}
— (1/2)trace [271(0) {PZ -1(@)P; + P;= ' (©)Pk} 5~ 16)A(0:,62)] -

Il

hy;

hjk

Now we consider the possibility of missing data. From Little and Rubin (1987), the maximum
likelihood estimator does not take into account the selection probabilities and hence solves

M
o _‘pml.l[zha) e . !pml,.'a(Qil‘e}
3 (s ] o[ )),

i=1
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where

_ (Qir — 61)/63
Wanl 3(@51, ) = (263)" {(lel —01)* - 63} |"

A.2. Inconsistency of the MLE for Nonnormal Distributions

Showing this fact algebraically is a somewhat unpleasant task in general, but a simple special case
illustrates the main idea. Suppose that the mean and variance of @ are known; this never happens
exactly, but in the AARP study n > 300,000, and so for all realistic purposes, the mean and
variance of @ really is known. For simplicity, suppose that crtz, is known and that mgp = 1, i.e., there
is only one FR. Reca!ling that 8) = E(Q) = Bo + B¢, 2 = E(F) =, 03 = V(Q) = Blo}? + o2,
8y = ,810:2, and 85 = of + a2, the unknown parameters for a normal-theory likelihood analysis
are (62, 04,05). By detailed algebra, it may be shown that the normal-theory maximum likelihood
estimator of f2 must satisfy

0= ZAi {Fi1 — 02 — (04/03)(Qi1 — 61)}.

i=1

By the usual theory of estimating equations, if all parameters can be estimated consistently, then
0=E[A{F - 062 — (64/63)(Q — 61)}].

Remembering that E(A | F,Q) = E(A | Q) = n(Q) because the data are missing at random, we
see that consistency requires that

0=E[r(Q){E(F | Q) — 62 — (64/63)(Q — 1)} . (7)

Note that (7) holds if 7(Q) = =, a constant. In general, however, because the function () is
arbitrary, for (7) to hold we require that the regression of F on @ be linear. This reflects the
distributional assumption of normality and need not hold otherwise.



